
DOI: 10.1007/s10765-006-0083-9
International Journal of Thermophysics, Vol. 27, No. 4, July 2006 (© 2006)

An Application of DHW Algorithm for the Solution
of Inverse Heat Conduction Problem1

J. Gembarovic2,3 and M. Löffler2,4

A damped heat wave (DHW) algorithm is applied for the temperature
distribution calculation in a solution of a linear inverse heat conduction
problem (IHCP). A nonlinear least squares algorithm is used for calculation
of the unknown boundary heat flux history in a one-dimensional medium.
The solution is based on the assumption that the temperature measure-
ments are available, at least, at one point of the medium over the whole
time domain. Sample calculations, for a comparison between exact heat
sources and estimated ones, are made to confirm the validity of the pro-
posed method. The close agreement between the exact and estimated values
calculated for both exact and noisy data shows the potential of the proposed
method for finding a relatively accurate heat source distribution in a one-
dimensional homogeneous finite medium. The proposed method of solving
inverse heat conduction problems is very simple and easy to implement.

KEY WORDS: inverse heat conduction problem; numerical algorithm;
temperature distribution.

1. INTRODUCTION

One of the important types of inverse heat conduction problems (IHCP)
deals with the determination of the boundary heat flux history from the
known transient temperature distribution in a solid.

Existing methods for the calculation of the heat flux from the temper-
ature rise of the sample are based on an analytical or numerical solution
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of the heat conduction equation:

ρc
∂T

∂t
=∇(λ∇T ), (1)

where ρ is the density, c is the specific heat, λ is the thermal conductivity,
∇ is the Hamilton operator, and T = T (�r, t) is the temperature in a
space-time point (�r, t). Equation (1) is solved with certain initial and
boundary conditions, and the solution of this direct heat conduction
problem (DHCP) is then compared with the experimental temperature
rise. Although an IHCP is an ill-posed problem, the heat flux function
can usually be estimated from the comparison. Fundamental concepts of
inverse heat conduction, and an extensive bibliography and survey on
IHCP methods can be found in Beck et al. [1] and in Alifanov [2].

The present work addresses the unsteady linear IHCP in a finite
medium with a time-variable heat flux at the boundary. A numerical solu-
tion of the DHCP is obtained using our damped heat wave (DHW) algo-
rithm described in Refs. 3 and 4. The test input data for IHCP were gen-
erated using an explicit finite difference (EFD) algorithm. The temperature
points at discrete regular times were modified by adding random errors
produced by a random number generator. Three examples of the temper-
ature history for piece-wise heat flux functions are given in this paper to
illustrate the use of the algorithm even in cases of very noisy temperature
history signals.

The DHW algorithm is very simple, universal, and easy to implement
in comparison with most analytical or numerical solutions of Eq. (1).

2. DHW ALGORITHM DESCRIPTION

In the DHW algorithm for the calculation of the temperature distri-
bution in one dimension, the medium [3] is divided into N equal slabs
of thickness �l = L/N . These slabs are replaced by a perfect conductor
of the same heat capacity separated by a thermal resistance �l/λ (where
λ is the thermal conductivity of the medium), so the temperature within
a slab at any given time is constant. Heat propagates from one slab to
another due to the existence of a temperature difference between the slabs.
A certain portion (given by the inner transfer coefficient ξ ) of the exces-
sive heat energy moves from one slab to the next one, lowering thus the
temperature difference between the two neighbor slabs. This redistribution
process (called the damped heat wave) starts from the left boundary slab
and marches in space from one pair of slabs to another. When the wave
reaches the boundary of the medium, it bounces back and moves in the
opposite direction in a perpetual manner.
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The inner transfer coefficient ξ is a dimensionless quantity given by
[4]

ξ = Fo∗

Fo∗ +2
, (2)

where

Fo∗ = α�t

�l2
(3)

is the Fourier number for one slab and α is the thermal diffusivity of the
slab material. The time step �t is equal to one loop time interval of the
heat wave.

When the wave imitates diffusion, the upper limit for the inner trans-
fer coefficient is ξ < 0.5. It follows from Eqs. (2) and (3) that the upper
limit for the time step �t is then given by

�t <
2�l2

α
. (4)

This introduces a limit to the maximum size of the time step that can be
chosen for a fixed �l. The wave speed v=2L/�t can be chosen arbitrarily,
but from Eq. (4) we get v >αN2/L. Generally, the calculated distribution
using waves with a higher speed is more precise than that with the lower
ones.

In case of heat losses a part of the excessive thermal energy leaves the
medium each time the wave reaches the boundary slabs. The temperature
change �T of the boundary slab due to heat losses is

�T =−ζ(T −Ta), (5)

where ζ is the surface transfer coefficient and Ta is the ambient temper-
ature. The surface transfer coefficient is a dimensionless quantity defined
as

ζ =BiFo∗, (6)

where Bi is the Biot number for one slab (Bi = hL/λN where h is the
coefficient of surface heat transfer). Generally, there are two different sur-
face transfer coefficients for a finite medium, one for each surface. In
order to fulfill the limitation ζ ∈〈0,1〉, the time step �t has to be limited
to

�t � �l2

αBi
. (7)
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For Bi <0.5 the condition given in Eq. (4) is more restrictive than in Eq.
(7), and is actually limiting the time step value.

3. INVERSE PROBLEM FORMULATION

Consider a medium of thickness L and constant thermal properties,
originally at zero temperature. At a specific time, t = 0, a heat flux is
applied to one surface at x = 0. The temperature history is measured on
the opposite surface at x =L. We will use the dimensionless time (the Fou-
rier number) defined as Fo = αt/L2 instead of the time t . The heat flux
function q is calculated in certain discrete dimensionless time points Foj =
αtj /L

2, j =0,1,2,3, . . . , n.
An ordinary least squares procedure [5] was used to find the unknown

parameters qj from

min
qj

k∑

i=1

[
Ti(Foi, qj )−Yi

]2
, (8)

where Ti(Foi, qj ) is the temperature point at time Foi calculated using the
DHW algorithm and Yi , i =1,2,3, . . . , k are the points of the temperature
response curve (observed data). More than one set of temperature history
points can be used to find the heat flux components in this procedure. It
means that the temperature response can be measured at the same time in
different locations of the medium. Different weights can be also assigned
to different temperature points in order to improve the precision of the
calculation. A weighted orthogonal distance regression algorithm [5] can
be used for heat flux estimation in the case when errors are expected in
both temperature and time data.

4. INVERSE PROBLEM SOLUTION

4.1. Sensitivity Analysis

In order to find conditions for an optimal experiment design, we have
to analyze sensitivity coefficients of the IHCP. Dimensionless sensitivity
coefficients Xj(Fo) are defined [1, p. 30] as the first partial derivative of
temperature T =T (Fo, qj ) with respect to the heat flux component qj

Xj (Fo)≡ λ

L

∂T

∂qj

, j =0,1,2,3, . . . , n. (9)
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The heat flux values between the discrete time points qj = q(Foj ), where
Foj = j�Fo, j =0,1,2,3, . . . , n, are linearly interpolated. The component
q0 is

q0(Fo)=





0, Fo<0
q0 + (q1 −q0)

Fo
Fo1

, Fo�Fo1

0, Fo>Fo1

(10)

For qj , j =1,2,3, . . . , n−1 we have

qj (Fo)=






0, Fo<Foj−1

qj−1 + (qj −qj−1)
Fo−Foj−1
Foj −Foj−1

, Foj−1 �Fo�Foj

qj + (qj+1 −qj )
Fo−Foj

Foj+1−Foj
, Foj �Fo�Foj+1

0, Fo>Foj+1

(11)

In order to identify an abruptly changing heat flux on the medium
surface, the number of heat flux points n should be as high as possible,
with �Fo small. On the other hand, due to the diffusion nature of heat
propagation, this requirement is in contradiction with the identifiability of
the heat flux components. As �Fo→0, the sensitivity coefficients Xj →0,
and, furthermore, they become linearly dependent. The problem of simul-
taneous heat flux component identification from temperature history is
difficult in this case and very sensitive to measurement errors. Usually, an
optimal value (or range) of �Fo can be found, for which enough heat flux
components can be estimated with a reasonable precision to identify an
unknown piece-wise heat flux function.

The heat flux sensitivity coefficients for a surface temperature in a
homogeneous finite medium for 0<Fo<2.5, �Fo=0.5, and Bi =0.1 are
plotted in Fig. 1. The first coefficient X0 is only half of the amplitude of
the coefficients with higher j , and its shape also differs from the others.
Fortunately, the precision of the first heat flux component determination
can be enhanced using additional information about the initial conditions
of the problem at Fo=0. The last two coefficients are affected by the fact
that it takes about 2�Fo for the sensitivity coefficient to reach its maxi-
mum value. It is therefore better to measure the temperature long enough,
to be able to make an additional assumption about the value of the last
heat flux component.

The first six sensitivity coefficients for the medium with 0<Fo<2.5,
�Fo=0.25, and Bi =0.1 are plotted in Fig. 2. The coefficients are closer
to each other and rising steeper than those in Fig. 1. Their magnitudes are
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Fig. 1. Sensitivity coefficients Xi for �Fo=0.5.
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Fig. 2. Sensitivity coefficients Xi for �Fo=0.25.

directly proportional to �Fo. The identifiability of the coefficients, espe-
cially for a noisy signal, is much smaller than in the case of �Fo=0.5.

For stable heat flux component calculations, �Fo�0.4 should be
chosen in the total time domain Fo�4. In this case, the first ten heat flux
components can be calculated with good accuracy.

It has to be noted that the optimal value of �Fo depends also on the
heat pulse shape and its duration. Sharp and abrupt changes of the heat
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Fig. 3. Temperature history and calculated heat flux components for a triangular shape heat
pulse: (a) �Fo=0.5, and (b) �Fo=0.25.

flux can lead to excessive oscillations in the calculated components, which
is characteristic for all ill-posed problems.

The calculated heat flux components accuracy does not depend on
heat losses. The described IHCP procedure can be applied to the tem-
perature signal without prior knowledge of the heat loss coefficient. It is
assumed, that the medium thickness L and the thermal diffusivity α are
known parameters.

4.2. Examples

4.2.1. Example 1

An example of the triangular heat pulse is given in Fig. 3. The
medium was divided into 20 parts. A total of 525 temperature vs. time
points were generated using the EFD algorithm with a heat pulse which
started at Fo=0, with a peak at Fo=1.8, and ended at Fo=3. The Biot
number was Bi =0.1 and the noise level was set to 0.2 of the units on the
temperature scale. The temperature history data and the results of the heat
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Fig. 4. Temperature history and calculated heat flux components for a rectangular shape
heat pulse: (a) �Fo=0.5, and (b) �Fo=0.25.

flux component calculation for �Fo = 0.5 and �Fo = 0.25 are plotted in
Figs. 3a and 3b, respectively.

The agreement between theoretical and calculated values of the heat
flux components is very good, especially for the case of �Fo = 0.5. The
last two heat flux components from the end of the time interval were
intentionally omitted, due to the reasons mentioned above.

4.2.2. Example 2

The second example data were generated in the same manner as in
Example 1, but for a rectangular heat pulse, which started at Fo= 0 and
ended at Fo = 3. The noise level was set to 0.5. Data and results of
the heat flux component calculation are plotted in Fig. 4a,b. An abrupt
change in the heat flux at Fo=3 caused significant oscillations in the cal-
culated heat flux components, both for �Fo = 0.5 and �Fo = 0.25. The
first step change of the heat flux at Fo=0 was effectively damped by the
fact that the initial condition T =0,Fo=0 can be used as additional infor-
mation in the temperature calculations.
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Fig. 5. Temperature history and calculated heat flux components for a trapezoid shape heat
pulse: (a) �Fo=0.5, and (b) �Fo=0.25.

4.2.3. Example 3

The temperature history for a trapezoidal heat pulse, which started
at Fo= 0, duration to Fo= 2.7, was generated in the third example. The
noise level was set to 1. The temperature and the results of the heat flux
component calculations are plotted in Fig. 5. Even for such a noisy signal,
the results for heat flux components for �Fo=0.5 are in very good agree-
ment with the theoretically expected values (see Fig. 5a). On the contrary,
the results for heat flux components for �Fo=0.25, plotted in Fig. 5b, are
obviously too scattered for a realistic reconstruction of the heat pulse.

5. CONCLUSION

A one-dimensional IHCP in a finite medium can be solved using a
simple iterative DHW algorithm. In this algorithm, the temperature is cal-
culated explicitly in one simple calculation that is repeated for each time
step as the heat wave marches through the medium with a constant speed.

The proposed algorithm is quite stable and the heat flux function can
be reconstructed even in the case of relatively noisy temperature signals.
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The algorithm can be used as a fast, easy-to-understand and easy-to-
implement alternative to existing analytical and numerical methods to
solve inverse heat conduction problems in a finite, one-dimensional, homo-
geneous medium.
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